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Abstract 

The uneven distribution of primary sources of electric power generation in Economic Community of West African States 

(ECOWAS) compelled the heads of states to create the West African Power Pool (WAPP). The vision of this system is to set up 

a common electrical energy market to satisfy the balance between supply and demand at an affordable price using the 

interconnected network. Forecasting maximum power demand and energy consumption is essential for planning and the 

coordination of new power plant and transmission lines building. This work consists of predicting maximum power demand and 

total energy that must transit through the WAPP interconnected network by the year 2032. We compare the performances of 

three time series models namely the Long Short-Term Memory (LSTM), Auto-Regressive Integrated Moving Average 

(ARIMA) and Fb Facebook Prophet. Electric power and energy data used for training the systems comes from the WAPP 

authorties. The results show that, for monthly peaks, the Facebook (Fb) Prophet model is the best, with a MAPE (mean absolute 

error percentage) of 3.1% and a low RMSE (root mean square error) of 1.225 GW. For energy prediction, ARIMA performances 

are the best compared to others with (RMSE 1.20 TWh, MAPE 1.00%). Thus, the forecast for total annual energy consumption 

and annual peak demand will be, respectively, 96.85TWh and 13.6 GW in 2032. 
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1. Introduction 

The introduction plays an important role in providing 

background information (including relevant references), 

emphasizing the importance of the study, and outlining its 

objectives. It is crucial to conduct a thorough review of the 

current state of the research field and incorporate key publi-

cations into your work. By referencing other research papers, 

you can provide context and position your own work within 

the broader research landscape. The final paragraph should 

provide a concise summary of the main findings and conclu-

sions, which will be helpful to the readers. 

References will be consecutively numbered as they appear 

in the text by using numerals in square brackets (e.g., [1-3] or 

[4–7]). Further details on references can be found at the end of 

this document. 

Forecasting peak electric power demand and energy con-

sumption is important for the planning and use of electricity 

facilities. In fact, power prediction has a considerable influ-

ence on the decisions of electricity suppliers [1, 2]. For better 

sizing of power generation, transmission and distribution 

systems, a reliable data on future electricity demand is re-

quired [3]. Future electricity demand can be split into three 

horizons mainly short-term forecasting (STLF) (forecasts 

period less than twenty-four hours), medium-term forecasting 

(MTLF) (forecast period between twenty-four hours and one 

year), and long-term forecasting (LTLF) for durations of more 

than one year [4-6]. For proper planning infrastructures, it is 

necessary to make a long-term forecast. 

Forecasting peak demand and long-term electricity con-

sumption can be influenced by certain socio-economic pa-

rameters or criteria. Thus, authors link residential electricity 

demand to variables such as household income, climatic fac-

tor measured by temperature, household demographic struc-

ture, electricity price and the efficiency of electrical appli-

ances [7, 8]. Furthermore, a positive statistical link between 

energy consumption and economic growth have been 

demonstrated in references [8-10]. The direct and indirect 

consequences of parameters such as gross domestic product 

(GDP), population trends, industrial growth and the use of 

coal in power generation were investigated as part of the study 

of China's energy demand [11]. The relationship between 

Iraq's real load and variables such as demographics, gross 

national product, consumer prices and temperature using 

linear logarithmic models and artificial neural networks 

(ANNs) was examined, and it emerged that there is a strong 

correlation between these different parameters [12]. Also, 

authors in [13] studied the relation between a time series and 

several influencing variables for long-term demand forecast-

ing in Greece. The results of this study indicate that GDP 

brings a large variation in demand, and ordinal regression 

models perform better than multiple linear regression. 

ARIMA, ANN and exponential smoothing forecasting models 

were used to forecast household electricity demand. The 

conclusions drawn from the study show that forecast accuracy 

is influenced by the choice of techniques and input variables 

[14]. 

From the literature we can deduce that GDP, demography, 

temperature and humidity can be used as parameters influ-

encing electricity demand. In our study, we used the average 

temperature and humidity data for the 14 ECOWAS countries 

[15], and the GDP and population data for the ECOWAS zone 

collected from the World Bank web page [16]. Figure 1 shows 

the evolution of average temperature and average humidity in 

the 14 ECOWAS countries. 

 
Figure 1. Temperature and humidity trends from 1981 to 2021. 
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The temperature trend shows that warming has continued in the ECOWAS zone, with an average temperature rise of around 

0.3°C per decade between 1991 and 2021, 0.2°C higher than the rise recorded between 1981 and 1990. The year 2021 ranks as 

the fourth warmest on record, depending on the dataset used. It is characterized by a long period of drought and a short period of 

rain. As for humidity, since the mid-1990s, West Africa has become wetter, with fewer but more intense rainfall events in recent 

years. As for other parameters, figure 2 shows the evolution of GDP and population in the ECOWAS zone. 

 
Figure 2. Population and GDP trends, 1981-2021. 

These data from the World Bank database show that pop-

ulation growth is tending towards exponential growth. The 

population of West Africa in 2021 is estimated at 413 million, 

representing around 32% of Africa's total population, and is 

set to grow by slightly more, to 796 million in 2050 and 1.5 

billion in 2100. The pace of population growth varies from 

country to country. The key factors in this demographic 

evolution are the high fertility rate and rising life expectancy. 

As for the zone's Gross Domestic Product (GDP) there is a 

remarkable growth since 2003, but following the COVID 19 

crisis, it falls and resumes its growth from 2020 onwards. 

GDP in the western region is forecast to grow by 3.4% in 2023, 

compared with 3.7% in 2022. The zone's GDP is not uniform 

across the different countries. 

In the literature, many authors have worked on the various 

problems of load forecasting or electrical energy consumption. 

Several models and methodologies are used to address these 

issues, and can be grouped into two (02) groups: Traditional 

models and artificial intelligence models [17-20]. Traditional 

models include exponential smoothing, regression, grey 

models and time series models [6, 18]. Artificial intelligence 

models, on the other hand, include models such as support 

vector regression (SVR) models, artificial neural networks 

(ANNs), machine learning (ML) models, deep learning (DL) 

models and genetic algorithm (GA) models [17, 18]. Each of 

these models can be combined to create hybrid models. 

The association of the causality of the parameters (eco-

logical degradation, GDP per capita and urban development) 

was used to predict Nigeria's energy consumption by 2030. 

The results obtained showed a sharp increase in energy de-

mand and better forecast accuracy [21]. In [22], ARIMA is 

employed to forecast short-term energy demand in Spain. It is 

demonstrated that this model has short convergence time for 

the short-term prediction. The authors [23] used the ARIMA 

model to predict electricity consumption in Ghana up to 2030. 

The results showed that Ghana's consumption will grow to 

9.5597 GWh. Jain and Al. [24] used ARIMA to predict elec-

tricity consumption. They concluded that the model per-

formed well, achieving a MAPE of 6.63%. ARIMA has been 

used to forecast Turkey's sectoral consumption and total en-

ergy for the next 15 years. The authors highlight the evolution 

of electrical energy demand in the agricultural, transport, 

utilities and residential sectors [25]. Several other authors 

have used ARIMA for forecasting in various fields, for ex-

ample electricity production to predict solar radiation in order 

to stabilize photovoltaic energy production over the long term 

[26], finance to maximize long-term investment profit at the 

level of three operators in India [27], and livestock farming to 

determine the average monthly cost of a kilogram of chicken 

meat in Egypt over the short term [28]. On the other hand, the 
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LSTM model was used for long-term road traffic forecasting 

[29]. The model has better accuracy and adequate stability. A 

new approach to long-term forecasting of photovoltaic energy 

in India using the LSTM model with the Nadam optimizer 

shows that the LSTM model works better with time-series data 

and is more efficient than the ARIMA and SARIMA models 

[30]. The LTSM model was also used to forecast domestic load 

for less than twenty-four (24) hours, based on consumption 

readings from domestic meters and knowledge gained from 

residents' behaviour [31]. The results of this work demonstrated 

the performance of LTSM in forecasting electricity demand. 

The LSTM model has also been used to predict oil production 

[32], the energy output of a photovoltaic field [33], and the 

quality of groundwater used for irrigation in northern Iran [34]. 

All these authors appreciate the results provided by this model. 

Also research conducted in [35] concerning medium- and 

long-term electric charge prediction using Facebook Profet was 

carried out. The authors showed the supremacy of the Prophet 

model over LSTM and ARIMA. Furthermore [36] studied the 

long-term power load forecast for Kuwait using the Prophet 

and Holt-Winters models. They concluded that Prophet pro-

vides excellent values and its errors are small. The author 

showed the supremacy of Prophet over SARIMA when evalu-

ating solar and wind resources [37]. [38] to determine the future 

cost of electricity in order to improve the economic analysis in 

the feasibility study. The Prophet model would be suitable for 

Pakistan to predict the second wave of COVID-19 [39]. Given 

the capacity of the three models ARIMA, LSTM and Prophet, 

their application will be judicious for our work. 

2. Methodology 

A set of monthly peak demand and energy consumption 

data from the WAPP statistical reports [40-42], climate data 

(temperature, humidity) from the NASA website [15] and 

population and GDP data from the World Bank website [16] 

quoted above were used with the ARIMA, Prophet and LSTM 

forecasting models to predict the peak demand of the inter-

connected grid and the resulting energy. 

2.1. Forecasting Method with ARIMA 

The ARIMA forecasting model, also known as 

Box-Jenkins models in the literature, comprises the auto-

regressive (AR) model components (p) and the MA moving 

average (q) described by the following formula: 

                                      (1) 

where: 

  : coefficient at observation       

   white noise distributed as error; 

 : the order of the first value included; 

  : coefficient at error       

 : represents the oldest previous error. 

Using the backshift operator: 

         , represents the rear offset. 

can be rewritten as (2): 

                              (2) 

where: 

                  
   polynomial representation 

of the moving average operator's backward shift AR, as a 

polynomial in the backward shift operator          

         
 . 

ARMA refers to the fact that the time series has at least a 

constant mean and variance, and that its covariance is based 

solely on the time difference. When non-stationarity is ob-

served, data transformations are required. Given the 

non-stationarity of the variance, the logarithmic method is 

generally the most widespread, while the non-stationarity of 

the mean is generally suppressed by differentiation. It is 

modelled by the ARIMA (p, d, q) and is represented by the 

following equation: 

                                 (3) 

with: 

d: is the degree of differentiation 

ARIMA modelling is carried out in six successive stages. 

Figure 3 shows a schematic diagram of the process. 

 
Figure 3. Block diagram of methodology ARIMA model. 

The autocorrelation model is used to characterize an 

ARIMA model. Fitting is a popular approach for determining 

the ARIMA order [43]. Model identification is based on the 

automated algorithmic comparison of models with different 

variables that best meet the fitting requirements [44-46]. 

Model validation is performed using the Ljung-Box test. 

2.2. Forecasting Method with Prophet 

This time-series prediction model incorporates seasonality, 

data trends and holidays to model complex characteristics. 

Seasonality can be adjusted in the form of daily, weekly and 

annual models. The decomposed mathematical representation 

is written as follows: 

                             (4) 
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where: 

      the data trend function; 

      seasonality; 

      the vacation effect, which can be added to specific 

data points; 

    distinctive characteristics of data not adjusted by the 

model. 

Linear growth by segments or saturation craters the pro-

phetic function. Maximum load data show a linear evolution 

by part, a linear growth by segments model is used as follows: 

                                  (5) 

   growth rate; 

   adjustment rate; 

   offset parameter; 

   represents trend reversal points    and is defined as 

     

with aj (t) defined by: 

      {
            
       𝑤   

               (6) 

Change points allow the linear growth model to change 

evolution and can be used by the user in the chain to better 

calibrate the model and provide reliable data forecasts. 

Prophet allows the user to insert the rate of trend adjustment 

or automatically detects points of change. 

Fourier series can be used to describe the seasonality S(t) 

which is a function of repetition (daily, monthly, yearly). 

Seasonality is given by the following equation: 

     ∑ (     (
    

 
)       (

    

 
) ) 

       (7) 

Where: 

P=1 for daily seasonality. For particular dates, the list of 

dates D defined by the analyst can be included in the vacancy 

matrix Z(t) to include the effects of these dates in the equation 

h(t), which must be inserted into the time series in the form of 

a regressor matrix. 

     [                      ]        (8) 

And 

                          (9) 

with   ~ (0,𝑣 2) where 𝑣 is the vacation smoothing parameter. 

2.3. LSTM Forecasting Method 

LSTM have been specifically developed to overcome the 

problem of dependency. Composed of four neuronal layers 

which collaborate differently, it has a serial architecture with 

an iterative module. 

The typical LSTM is made up of storage modules called 

"cells". Cell state and hidden state are entrusted to the 

neighbouring cell. The cell state is the main data sequence, 

which routes data in the same way. In this way, certain linear 

adaptations can take place. Data can be introduced or sub-

tracted from the cell state via sigmoid gates. A gate is similar 

to a layer or series of matrix operations, which contain dif-

ferent individual weights. LSTM can be modelled in three 

essential steps: 

Step 1: The mechanism for identifying and excluding in-

formation when creating an LSTM network is provided by the 

sigmoid operation, which is connected to the last LSTM cell 

(  -1) at time   - 1 and to the current input 𝑋   at time  . This 

forgetting gate (  ) is a vector containing the variables 0 to 1 

indicating the number in each cell state [47]. The equation of 

the forget gate is: 

    (  [     𝑋 ]    )        (10) 

Where: 

  is the sigmoid equation; 

   and    are the weight matrices and parameter bias 

vectors and the forgetting gate, respectively. 

Step 2 consists in determining and storing the data of the 

future input 𝑋  in the cell, as well as updating the cell state. 

This operation is carried out in two stages: the sigmoid layer 

and the   𝑛  layer. In fact, the sigmoid layer indicates 

whether the latest data will be updated or rejected (0  𝑢 1) and 

the   𝑛  function assigns a weight to the data received (-1 to 

1). The two data are multiplied to update the new state of the 

cell. the old memory 𝐶 -1 is completed to new memory, 

causing 𝐶  to be forgotten [47]. 

       [     𝑋 ]                (11) 

          [     𝑋 ]              (12) 

𝐶  𝐶                          (13) 

With: 

𝐶 -1 and 𝐶  the cell statuses at instant   - 1 and   respec-

tively.   and   are the weight and parameter vector matrices 

of the bias and cell behaviour, respectively. 

In step 3, the data at the    output are based on the 𝑂  cell 

behaviour output, but this is a sieved variant. Next, the re-

sponse of the sigmoid 𝑂  is multiplied by the data created by 

the layer   𝑛  from the cellular behaviour 𝐶 , with a data 

ranging from -1 to 1. 

𝑂      [     𝑋 ]                (14) 

   𝑂                     (15) 

With: 

   and    respectively, the weight matrices and bias, of 
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the output gate. 

To compare and determine the accuracy of each of the 

models used, several other criteria are used, including simple 

statistical measures [48, 49]. 

According to authors in [50], the most common methods to 

evaluate the accuracy of a prediction model are the computa-

tion of MAPE and RMSE. Equation (16) and (17) are the 

formula for calculating RMSE and MAPE respectively: 

      √
 

 
∑       ̂ 

  
   

           (16) 

     
 

 
∑ |

  ̂   

  
| 

                 (17) 

With: 

  : Measured value; 

  ̂: Predicted value 

𝑛: number of values tested. 

 
Figure 4. LSTM architecture (Hochreiter & Schmidhuber, 1997). 

3. Result of Simulation 

The three models ARIMA, LSTM and Prophet were trained with 80% of the monthly historical peak demand values available. 

Once trained, we proceeded to validate each model with the remaining 20% of historical data. Figure 5 shows the data validation 

test for the three models: 
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Figure 5. Superpositions of the LSTM, ARIMA and Prophet validation graphs for peak electrical demand. 

Figure 5 shows the behaviour of each of the trained models in the face of 20% historical data in blue. We note that the ARIMA 

model fails to follow the trend of the historical values. We can see that the LSTM and Prophet models are virtually indistin-

guishable and tend to follow the trend of the historical data. Only the performance of each model can enable us to choose the 

best-performing model. Table 1 shows the performance of each model. 

Table 1. Performance of LSTM, ARIMA and PROPHET for peak electrical demand. 

PERFORMANCE MAPE (%) RMSE (GW) 

ARIMA 4,59 1,276 

PROPHET 3,10 1,255 

LSTM 3,17 1,259 

 
Figure 6. 2032 WAPP monthly peak electricity demand forecast using Prophet model. 

In the table, we see that the errors of the ARIMA model are higher than those of the other two models. The Prophet model has 
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the lowest errors, with a MAPE of 3.10% and RMSE of 1.255 GW. We can conclude that it is the best model to use for predicting 

peak demand in 2032. Figure 6 shows WAPP's monthly forecast of peak electricity demand using Prophet model. 

Figure 6 shows that the peak is increasing. This peak will be 12GW in 2026 and will reach 13.6GW in 2032, i.e. an increase of 

12.58% compared to 2021, and will occur in December 2032. The peaks for the other months are shown in table 2: 

Table 2. Forecast of monthly electricity demand in 2032. 

Month 1 2 3 4 5 6 7 8 9 10 11 12 

GW 13,45 13,49 13,37 13,25 13,18 13,13 13,17 13,18 13,19 13,3 13,52 13,6 

As for annual energy forecasting of the WAPP, two models were the subject of our study: the ARIMA and Prophet models. 

After training the models with 80% of historical data, we validated the models with the remaining 20% of data. Figure 7 shows 

the behaviour of the two models in relation to real values. 

 
Figure 7. Superpositions of ARIMA and Prophet validation graphs for electricity consumption. 

From this graph we can see that, over the validation period 2017 to 2021, the ARIMA model more closely followed actual 

values, whereas Prophet overestimated energy consumption from 2017 to 2019 and underestimated it after this period. 

To select the best model, we calculated the errors shown in the following table: 

Table 3. ARIMA and PROPHET performance for electric energy consumption forecast. 

PERFORMANCE MAPE (%) RMSE (TWh) 

ARIMA 1,00 1,20 

PROPHET 4,19 3,24 

Of these models, we have chosen the ARIMA model for forecasting electricity consumption, as it has the lowest errors. Figure 

7 shows the evolution of electrical energy consumption up to 2032 using the ARIMA model. 
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Figure 8. Electricity consumption forecast for 2032 using ARIMA model. 

Electricity consumption according to the implemented 

ARIMA model will reach 86.14 TWh in 2026, rising to 96.85 

TWh in 2032, an increase of 12.17% compared to 2021. 

4. Conclusion 

This work made it possible to choose the best models in for 

forecasting peak electricity demand and annual electricity 

consumption. It showed that the ARIMA model is better for 

forecasting electricity consumption, while Prophet model is 

better for forecasting monthly peak demand. 

Indeed, by 2032, annual peak demand will be 13.6GW, 

with electricity consumption of 96.85TWh. 

The future prospects of this work will focus on matching 

supply and demand, in order to plan power generation sources 

effectively. 

The models are recommended for use in predicting peak 

electricity demand and annual electricity production, in order 

to plan generation and transmission infrastructures and avoid 

over-investment. 
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